

California ITHIM Tool
Documentation

California R/Shiny Version

by

University of California, Davis

Kenji Tomari, MS
Neil Maizlish, PhD
Jonathan London, PhD

 and

Consultants

Chengsheng Jiang, PhD
Amy Weiher, MA

October 17, 2019

 i

Table of Contents

1. Introduction .. 1

Chapter References ... 3

2. Overview ... 4

2.1. File Organization .. 4

2.1.1. ITHIM TOOL Files .. 6

2.2. Modularity .. 8

2.3. The Shiny App .. 9

2.3.1. The User Interface (UI) .. 10

2.3.2. The Server Function ... 11

2.3.2.1. The Server Function: Processing .. 12

2.3.2.2. The Server Function: Inputs ... 12

2.3.2.3. The Server Function: Outputs ... 13

2.4. Visualization .. 13

2.5. The Analytic Engine .. 14

2.6. Startup Scripts .. 15

Chapter References .. 15

3. Reactive ITHIM .. 17

3.1. Modules .. 17

3.2. UI Function .. 18

3.3. Server Function .. 19

3.3.1. reactiveValues .. 19

3.3.2. reactive ... 20

3.3.3. observeEvent .. 22

3.3.4. renderUI ... 22

3.3.5. downloadHandler ... 25

3.3.6. Table of Reactive Components .. 25

Chapter References .. 27

4. User Upload ... 28

4.1. shiny_functions ... 28

Chapter References .. 29

5. ITHIM Functions .. 30

5.1. Attributes ... 30

file:///C:/Users/Noneof/Documents/HealthLinks/ARB/Project/UserSupport/ToolDocs/build/html/index.html

 ii

5.2. The l ("el") Object ... 31

5.3. Table of ITHIM Functions ... 31

Chapter References .. 33

6. Visualizations .. 34

6.1. Group 1: The Root ... 34

6.2. Group 2: HTML Tables ... 38

6.3. Group 3: Graphs ... 40

6.4. Group 4: Summary Report ... 42

6.5. Group 5: The Infographic .. 43

6.5.1. The Design of the Infographic ... 43

6.5.2. Implementation of {grid} Functions .. 45

7. Startup Scripts .. 46

7.1. global .. 46

7.2. preprocessing ... 46

7.2.1. Data Dictionary .. 47

7.2.2. Data Integrity ... 47

7.3. Changes .. 48

Chapter References .. 48

1

1. Introduction

The documentation for the California R/Shiny ITHIM has two main components:

1. User's Guide and Technical Manual
2. ITHIM TOOL

The User's Guide and Technical Manual describes the conceptual basis of the ITHIM model, web site
navigation, data structures for calibration and built-in scenarios, and the R programming of the
non-interactive web pages (Home, About, Decision Support, User Support), and the portion of the
RunITHIM page above the ITHIM TOOL title. R programmers should read Chapter 3 of the User's
Guide to get an orientation to the overall structure of the R/Shiny code of the ITHIM website
before delving into the ITHIM TOOL.

The ITHIM TOOL is the subject of this document, which provides details of the R code that runs
the ITHIM model as an interactive application. The R/Shiny code for the ITHIM TOOL generates

the portion of the RunITHIM web page below the ITHIM TOOL title.

Organizing the website into interactive and non-interactive pages allowed the development team
at University of California, Davis to divide up the programming tasks without creating potential
code conflicts between or within web pages. This separation of programming and web pages has
additional advantages:

1. Prevents inadvertent changes in the code of the interactive application when performing
updating the content of the non-interactive pages, and

2. Facilitates a development process for customization (for other states or countries) in which
the ITHIM TOOL can be embedded in a different website presentation, and visa versa.

Throughout this document, the terms ITHIM TOOL and ITHIM module are used interchangeably.
"Module" refers to the R and shiny code that implements the ITHIM model as an interactive web
application. Further, this module fits inside the California ITHIM website. In the following
documentation, curly braces are used to denote an R package such as {shiny}. Terms in italics
indicate specific objects or commands in R or an R package.

This document does not cover the logic or design of the ITHIM model (e.g. the comparative risk
assessment or the data sources). The ITHIM model, data, and methods are summarized in the
About>Introduction and About> Methods webpages as well as in the User's Guide and Technical
Manual.

This documentation assumes that the reader has a fundamental understanding of the R language,
including:

 Basic syntax
 Variables and data types (with a particular emphasis on vectors, data.frames and lists)
 Operators
 Decision Making (e.g., if-else statements)
 Loops

https://cal-ithim.org/ithim/ITHIM_manual.pdf
https://cal-ithim.org/ithim/CA_ITHIM_Tool_Documentation.pdf
https://cal-ithim.org/ithim/#Introduction
https://cal-ithim.org/ithim/#Methods
https://cal-ithim.org/ithim/ITHIM_manual.pdf
https://cal-ithim.org/ithim/ITHIM_manual.pdf
https://www.r-project.org/

2

 Functions
 Regular expressions (regex for short). (While the {stringr} package is not utilized here, the

regex section of the {stringr} cheat sheet is a good resource. The majority of the regular
expressions in this code (and indeed R) uses the conventions established by the Perl
language.)

 Packages
o Most packages will be described as they are encountered in the documentation.

However, {roxygen2} is used throughout the documentation. The {roxygen2}
notation format is implemented in the code before the function definitions in the
TOOL. These notations are just an additional form of documentation, they simply
describe the function in # comments next to the function definition.

 Data reshaping (particularly the merge function.)

In addition to basic R language concepts, we will encounter a few more advanced topics, still
drawing from the {base} package of R. These include lapply, sapply, and mapply. These {base}
functionals operate much like a loop, iteratively applying some function over a list or vector.
Readers should also understand the concept of attributes. In short, attributes allow R objects (e.g.
variables) to be assigned name-value pairs that attach metadata. Attributes are also discussed in
some length in the chapter 5 of this document. Readers should also have a strong understanding of
how the package {shiny} works, especially the concept of “reactivity”. Beyond the R language,
readers should have some familiarity with HTML (hypertext markup language) and CSS (cascading
style sheets), although expertise in these languages is not critical.

To learn more about advanced technical components, such as the functions and packages, we will
provide hyperlinks to explanatory materials.

Readers are advised that as they read this documentation they can open the relevant R code and
follow along. This is particularly helpful for chapters discussing specific R script files. For instance,
as we review the visualization.R script, readers should open this file and briefly preview each
function group in the code before reading the summary of the function group in documentation.

https://github.com/rstudio/cheatsheets/blob/master/strings.pdf
https://www.rdocumentation.org/packages/roxygen2/versions/6.1.1
https://adv-r.hadley.nz/vectors-chap.html

3

Chapter References

 R for Data Science is an excellent book on data science by Garrett Grolemund & Hadley

Wickham (albeit utilizing a different suite of R packages). Notably, it has a strong introduction
to the package {ggplot2}

 Advanced R by Hadley Wickham has key sections with respect to this project, including
attributes, functionals, and non-standard evaluation.

 TutorialsPoint is a free website to learn the basics of R.

https://r4ds.had.co.nz/
https://adv-r.hadley.nz/
https://www.tutorialspoint.com/r/r_overview

4

2. Overview

This chapter presents a brief overview of the main components of the ITHIM TOOL.1 A schematic
overview is presented on the next page (Figure 2.1).

2.1. File Organization

The file structure of the ITHIM TOOL is divided into two .R files in the “root folder” alongside two
sub-folders (depicted below). The .R files include the app.R2 and global.R, and the sub-folders
include the tool_files and www.

root_folder/
 app.R
 global.R
 tool_files/
 ithim_tool.css
 log.txt
 (Various .png files)
 (Various .R files)
 (Various .csv files)
 www/
 bootstrap2.css
 (Various .png files beginning with the word "icon_")

The diagram (Figure 2.1) shows the files necessary to make the ITHIM TOOL run properly apart
from the overall website. Several files necessary for the entire ITHIM website to function properly
are not shown (e.g., webtext.csv, webphotoimage.csv, counties1col.csv. regions.csv). If we want to

run the ITHIM TOOL by itself (Fig. 2.2), we would only need the file structure displayed above and

a modified version of the app.R file without {shiny} code for the non-interactive pages or website
page navigation.

Figure 2.2. “Standalone” ITHIM TOOL

file:///C:/Users/Noneof/Documents/HealthLinks/ARB/Project/UserSupport/ToolDocs/build/html/overview.html%23fig-tool-only

5

Figure 2.1. Overview of the ITHIM TOOL

6

2.1.1. ITHIM TOOL Files

Below are lists of the critical files in the /tool_files directory. The R Scripts contain functions or
shiny modules that allow the app.R script to work properly. The comma separated values files are
the ITHIM data in tabular form, or specially formatted text that is utilized in the ITHIM TOOL.
Certain pieces of text in the {shiny} app are better managed outside of the code, because it makes
editing them more convenient. The PNG images are for the infographic. It should be noted that
there are another set of images used in the ITHIM TOOL in the directory /www. In the case of the
infographic images, the R package {grid} needs the images loaded in binary and to reconfigure
them to produce the stitched together infographic; in the case of the Summary Report, the images
are simply loaded directly into the page using HTML. In the {shiny} world, HTML images must live
in the /www directory. Finally, the CSS, or Cascading Style Sheets, provide some of the important
styling to the ITHIM TOOL, and to the ITHIM TOOL alone.

R Scripts

Directory Filename Purpose

tool_files ithim_functions.R The Analytic Engine of ITHIM.

tool_files ithim_metadata_extraction.R
Supports data integrity checks. Run externally
from TOOL.

tool_files preprocessing.R
1 of 2 scripts that run just once (the other being
global.R).

tool_files shiny_functions.R
Some functions utilized in the operation of the
TOOL.

tool_files tool_modules.R The reactive {shiny} modules.

tool_files visualization.R
Creates the tables, graphs, report, and
infographic.

Comma Separated Values

Directory Filename Purpose

tool_files WalkBikeTransitRatios.csv Data for model.

tool_files age_sex_region_county2010-2050.csv Data for model.

tool_files age_sex_region2010.csv Data for model.

tool_files APC_Disease_Rates.csv Data for model.

tool_files ATmean_min_week_age_sex_baseline.csv Data for model.

tool_files Baseline_distance_by_facility_type.csv Data for model.

tool_files bike_walk_cv.csv Data for model.

tool_files bus_occupancy.csv Data for model.

tool_files CalBurdenDisease2010.csv Data for model.

7

Comma Separated Values

Directory Filename Purpose

tool_files causelist.csv Data for model.

tool_files CO2g_mi.csv Data for model.

tool_files COI2010USD.csv Data for model.

tool_files data_dictionary.csv Text for TOOL.

tool_files default_narratives_2019_07_10.csv Data for model.

tool_files DiseaseRiskAdjuster.csv Data for model.

tool_files Infographic_ussg_lcd.csv Data for infographic.

tool_files ithim_tool_strings.csv Data for model.

tool_files METminWalk_Bike.csv Data for model.

tool_files nonTravelMETS.csv Data for model.

tool_files PA_RR.csv Data for model.

tool_files ParameterDefaults.csv Data for model.

tool_files PM25_RR.csv Data for model.

tool_files PM25CARB2010_2050.csv Data for model.

tool_files regions.csv Data for model.

tool_files report_template.csv Text for TOOL.

tool_files rti_baseline.csv Data for model.

tool_files tool_table_strings.csv Text for TOOL.

tool_files user_error_codebook.csv Text for TOOL.

PNGs

Directory Filename Purpose

tool_files 01 - Header.png Infographic

tool_files 02 - Transportation Impact.png Infographic

tool_files 03 - Direct Impacts.png Infographic

tool_files 04 - Scenario Summary.png Infographic

tool_files 05 - GHG Emissions.png Infographic

tool_files 06 - Years of Life.png Infographic

tool_files 07 - Health Cost Savings.png Infographic

tool_files 08 - Air Pollution.png Infographic

8

PNGs

Directory Filename Purpose

tool_files 09 - Outcomes.png Infographic

tool_files 10 - Footnotes.png Infographic

Cascading Style Sheets

Directory Filename Purpose

tool_files ithim_tool.css Adds style to TOOL.

2.2. Modularity

A {shiny} app is typically launched from a single R script with the command:

shinyApp(ui = ui, serve = server).

Above this line of code, the script will typically contain a ui variable and the definition of a server
function for the above shinyApp() function to take as arguments. However, unlike a conventional
{shiny} application, the ITHIM TOOL utilizes an “abstraction” designed by the creators of {shiny} to
facilitate the incorporation of reactive code saved in another .R script. This abstraction is called a
shiny module. Just as a function can be defined in a different .R script file, and then loaded into
another .R script (much as our app.R does with the line source("global.R")), a shiny module may be
inserted into our ui and server from a different .R file. Therefore, we can have a perfectly
functioning ITHIM TOOL with the following code in our app.R:

Run *one-time* only code.
source("global.R")

Define UI for application
ui <- fluidPage(
 theme = "bootstrap2.css",
 ithim_toolUI("TOOL")
)

Define server logic
server <- function(input, output) {
 callModule(ithim_tool, "TOOL")
 }

Run the application
shinyApp(ui = ui, server = server)

Notice the bit of code in the ui that calls the function ithim_toolUI() and the bit of code in the server
function definition that calls the function callModule(). Two important steps are occurring in the
above code. First, the line that reads source("global.R") is reading R code from a file called global.R.

https://shiny.rstudio.com/articles/modules.html

9

(A more thorough explanation of the global.R file will be described later.) If you take a look at the
bottom of the global.R file briefly, you should notice a line that reads source(file.path(pth,
"tool_modules.R")). This line yet again reads in another file, tool_modules.R. Indeed, this command
composes the second important step, the definition of two functions (in tool_modules.R).

Here we depart from the app.R file to briefly review tool_modules.R. Despite the greater than 1,600
lines of code in this script, only two functions are being defined here. You’ll note that these
functions are in fact the aforementioned “bits of code” in the beginning of the previous paragraph.
One defines the content to be inserted into the ui and the other to be called from the server
function. In fact, for the most part, the form of the code presented here in these two functions
appear to be the same form that might conventionally appear in the app.R. For instance, much like
any ui there are a number of calls to the function fluidRow() (which creates a container for some
content in the fluidPage()). However, you will note two differences: first, that the function call
fluidRow() is occurring in the separate .R file; second, that a new function appears, NS().

A thorough explanation of what exactly this new function does is beyond the scope of this
documentation (again, please review the provided links to the tutorials on {shiny} modules)3.
However, in brief, NS is reserving a “namespace” (a method to refer by name to the argument
being passed from our ui and server to the newly introduced functions ithim_toolUI() and
ithim_tool()). The reason why this layer of complexity is required is due to the principle motivation
for the developers of {shiny} to create “modules”: the module (typically) allows programmers to
repeat chunks of reactive code in a single page. However, in our use case, it allows us to separate
the ITHIM TOOL from the rest of the ITHIM website, in effect allowing us to:

1. Divide the code in such a way as to facilitate the Cal-ITHIM team to split up our own work in
the development process

2. Better organize our files
3. Isolate code to pass along to other coders only interested in the tool that executes the ITHIM

So, at the cost of a little complexity, we gained a great deal in terms of cleaning up our code.
Moreover, this documentation can now point to specific files where the ITHIM TOOL “happens.
One could cut much of the code in tool_modules.R and paste it directly into the app.R script. The
only thing you would need to do is remove all the references to NS(). More about modularity is
dedicated to the documentation page about the tool_modules.R script later.

2.3. The Shiny App

Now that the {shiny} module system has been described, we’ll briefly review the organization of
the functions defined in the tool_modules.R. Please note that many of the .R scripts in the ITHIM
TOOL utilize “document outlines,” which should enable coders to view the organization of code in
RStudio. This is certainly the case for the tool_modules.R, and readers are advised to enable
document outlines when reviewing this script for both organizational and navigational purposes
(see Fig. 2.3).

https://en.wikipedia.org/wiki/Namespace

10

Figure 2.3. On the left is lines 2-30 of the tool_modules.R, while on the right, the Document
Outline is visible. On macOS, type cmd + shift + O to toggle it on and off.

2.3.1. The User Interface (UI)

The ithim_toolUI() function takes some “id” as an argument and outputs an object from
shiny::tagList().4. This tagList object, is itself composed of multiple fluidRow() objects. Principally,
there are two calls to fluidRow() here: the first creates a “banner” (a simple HTML div) that just
presents the title “ITHIM TOOL”; the second creates the remaining content of the ITHIM TOOL,
and is thus quite complex. Indeed, this second fluidRow object is the main interface for ITHIM,
with all its options and output. It is composed of two column() objects: the left hand side has
“model selection” options for running the model, and the right side has the output (e.g. the
infographic). To clarify, this set of “options” and “output” is not technical R or {shiny} language.
Rather, we use it here in this documentation in the vernacular sense to refer to what the end user
will see.

Both columns (i.e. the model selections/options and the output) contain multiple calls to the
function uiOutput(). This may be misleading as simple {shiny} applications typically prompt users
for information (i.e. inputs) more directly (for instance, by calling the function selectInput(), see
Figure 2.4), and thus exclusively reserving uiOutput() to what you might normally consider to be
“outputs” like tables and graphs. However, due to our need for “model selections” to react to user
choices throughout the end user’s process of exploring model options, the UC Davis ITHIM team

11

decided to have selection options appear or disappear conditionally. Therefore, the function
renderUI() is utilized liberally to support this more dynamic functionality.

Figure 2.4. A simple selectInput() function. In fact, this simple selectInput() call is embedded in a

renderUI() function in the actual tool_modules.R, so that it may be conditionally invoked.

There is a good deal of CSS present in this piece of code. Ideally, this would be transferred to a CSS
document to be by itself. Indeed, a greater portion of the CSS used in this tool is found in file
ithim_tool.css. Thus, the reader will note that at times the style will be defined within the R script,
and at other times an HTML class will be applied to various {shiny} HTML tags. See the sample
code below.

Style is embedded:
column(
 width = 4,
 offset = 0,
 style = paste(
 "background-color: transparent; ",
 "color:",
 otros_colores[7],
 "; ",
 "margin: 0; ",
 "color: #1F8BBF; "
),
Style is pulled from ithim_tool.css
tags$h3(
 "Make Your Selections",
 class="ithimTool_modelSelection_headers"
),

2.3.2. The Server Function

This function is more complicated and a more detailed description of the tool_modules.R will be
provided later in this documentation. However, here we will provide a brief overview of the server
function.

The ithim_tool server function can be conceptually divided into three parts:

12

 The processing functions.
 The user input functions.
 The output for user consumption.

Rather than technical terms specific to R or shiny, the parts terminology provide convenient
descriptions to help you navigate the mesh of code.

2.3.2.1. The Server Function: Processing

The processing functions include the “tracker”, “isolate_geography”, run, and three observeEvent()
functions. As these are all functions with some form of reactivity, they respond to various other
components spread throughout the ithim_tool server function. The most important processing
function, and the best place to begin, is the run reactive() function.

The run reactive() function takes all the various inputs to the ITHIM (e.g. which Scenario, what year,
and what geography to model), reformats these parameters/inputs, and sends them through a
chain of functions that compose the ITHIM (i.e. the functions from ithim_functions.R). One of the
key tasks that run accomplishes is to tell the ITHIM functions (i.e. the Analytic Engine) what kind of
parameters and data are being passed to it. Are the data from a user? Is the scenario some version
of a “baseline multiples” scenario5? And so forth. Certainly, other things are going on in “run,” but
taking inputs and then setting them up to work is the main idea.

By the end of the process, run returns a single list (see more here). The list is filled with numerous
bits of data, and contains the essential products of the calculations of the ITHIM. Not only does it
have data.frames with such things as the Road Traffic Injuries Parts Attributable Fraction table, but
also all the stepping stones it took to get there. However, nothing in the output of run is readily
consumable for users. That task is left to other functions. It should be noted that the “tracker” and
“isolate_geography” functions helped implement the run reactive() function. Whereas, the three
observeEvent() functions are only invoked if the user wants to upload their own data.

(In the Document Outline panel in RStudio, these functions are prepended with “rV”, “rx”, and
“oE”.)

2.3.2.2. The Server Function: Inputs

The inputs/parameters that a user selects occurs within bits of code that begin like this:
output$NAME_OF_PARAMETER <- renderUI({..., where NAME_OF_PARAMETER is some
parameter like the year that the user wants to run. The bulk of the inputs appear or disappear on a
conditional basis, and therefore we utilize the renderUI() function. These functions allow us to
produce drop down menus, number input boxes, or radio buttons based on certain conditions.
Take the year selection drop down menu declared in output$year_select (see the code chunk below). It
requires that a scenario have been selected first, hence the bit of code, req(input$chosen_scenario).

When you run the ITHIM TOOL, the year selection menu appears right away. This is explained by
the fact that the ITHIM TOOL selects a scenario by default to run at start up. (Indeed, it does this
for the year selection, too.) Even when you change the scenario, the year selection menu never
seems to go away. This is may “appear” to be the case, but in fact, this is just an artifact of fast

file:///C:/Users/Noneof/Documents/HealthLinks/ARB/Project/UserSupport/ToolDocs/build/html/ithim_fn.html%23l-obj

13

computers; in other words, it happens so quickly that a user would not take notice that the menus
appear in succession.

output$year_select <- renderUI({
 req(input$chosen_scenario)
 if (input$chosen_scenario != "User Upload" |
 input$chosen_scenario == "User Upload" &
 !is.null(tracker$usr_narratives)) {
 # If user upload.
 selectInput(
 inputId = ns("chosen_year"),
 label = "Time Periods",
 selected = 2010,
 choices = seq(2010, 2050, by = 5),
 width = "100%"
)
 }
})
(In the Document Outline panel in RStudio, these functions are prepended with “Input”.)

2.3.2.3. The Server Function: Outputs

These functions take the result of the run reactive() function and produce outputs for users to
consume. These include the tables, the graphs, the infographic, and the summary report (as well as
titles of graphs, error messages when users upload faulty data, and quick facts about the scenario
that the user selected). The most complicated of these functions is the visualization function,
output$vis. It takes the output of run and then sends it through various functions from
visualization.R to produce outputs. In most cases, the output of these functions is some form of list
or tagList, which in turn are composed of some sort of graphical or HTML textual items.
Additionally, the outputs also include a download button that allows users to retrieve the tables
produced by functions from visualization.R as a csv, or comma separated values file that can be
opened in spreadsheet software.

(In the Document Outline panel in RStudio, these functions are prepended with “Print” or
“Button”.)

2.4. Visualization

The visualization.R script is also a complex script and comprises all the functions necessary to
produce the attractive graphics in the ITHIM TOOL: the HTML tables, the graphs, the summary
report, and the infographic. It contains 18 functions divided into six groups:

 string substitution
 data.frame making
 table making
 graph making
 report making

14

 infographic making

A key function is fn_dataframer. Most other functions depend on the fn_dataframer function either
directly or indirectly. It takes the output of the run reactive() function, outlined above, and
produces a number of data.frames. It takes the raw output of run and distills key ITHIM results into
one of three sets of tables: Summary, Medium, or High detail. The code reveals that each level of
detail follows a standard nomenclature, STab, MTab, or HTab, with each appended by a number
that uniquely identifies it. For instance, STab4 will always be the “Annual Change in the Burden of
Disease by Health Pathway;” or HTab5 will always be the “Rate of Fatal and Serious Injuries.” The
run function feeds the parameters that instruct fn_dataframer to either produce a set of Summary,
Medium, or High tables. In turn, the data.frames that fn_dataframer produces may later be used to
manufacture presentable tables, graphs, reports, or infographics. While these data.frames are, in
essence, tables, the actual production of HTML tables occurs in fn_tableTagger. In other words,
fn_dataframer reorganizes the raw results of the ITHIM, but does not make a visually presentable
table for a web page (rather, these tables simply live in the RAM). The process of converting raw
ITHIM results into a presentable table was split up into two functions precisely because other
functions need those data.frames, but not the HTML tags that go along with it.

The next tier of important visualization.R functions include: fn_tableManager (for HTML tables),
fn_graphManager (for graphs), fn_reporter (for Summary Reports), and fn_ig_pngMaker (for
infographics). After the data.frames have been constructed in fn_dataframer, each one of these four
functions represent the beginning and the end for the four types of visualizations. From inside
these functions, they call the other functions in visualization.R to perform various tasks. Whatever
visualization is desired will be produced in the last line of these four functions, and be
subsequently passed along to output$vis (in tool_modules.R) to be rendered in {shiny} (see above).

Read more about visualizations here.

2.5. The Analytic Engine

Up until this point, we’ve taken the actual ITHIM for granted. Here we will explore the bit of code
necessary to run the model by itself. In a previous section we discussed the run reactive() function,
which takes the parameters chosen by the user (e.g. the year, geography, scenario), reformats
them, and feeds them into the Analytic Engine. It does this by creating a list object that contains a
number of pieces of data and parameters. This list is sent to the first function from the Analytic
Engine (i.e. from ithim_functions.R); this function called fn_prep, then returns the same list object,
but with modifications. In fact, this protocol is followed for the remainder of the run reactive()
function, with each subsequent function from ithim_functions.R.

The ithim_functions.R script is principally divided into two parts. First is a group of functions that
either play a role in preparing the data to be processed in ITHIM initially, or functions used
sporadically throughout the ITHIM. The second part, beginning with fn_distances, composes the
heart of ITHIM. The heart of ITHIM is comprised of 10 functions, each largely organized around a
theme (scenario-specific travel distances by mode, active travel times, PAF calculations, change in
burden of disease, etc.). This R code is modeled after a simplified R script called the “Long Engine”
which does not have reactive inputs for scenario, geography, or time period. It was developed to
validate the analytic engine against outputs of spreadsheet ITHIM.

file:///C:/Users/Noneof/Documents/HealthLinks/ARB/Project/UserSupport/ToolDocs/build/html/overview.html%23the-server-function-outputs
file:///C:/Users/Noneof/Documents/HealthLinks/ARB/Project/UserSupport/ToolDocs/build/html/visualization.html

15

One key difference is that the “Long Engine” includes some bits of code that exist outside of any
defined functions, but as the ITHIM TOOL lives in a {shiny} app, it demands that all components of
ITHIM exist within some function. Thus some parts of the “Long Engine” have been incorporated
into various functions. It should also be noted that much of the conditional statements that help
the “Long Engine” decipher scenarios has been reconfigured to utilize attributes. This topic is
explored in further detail in later parts of the documentation.

One can run the functions in ithim_functions.R in a static environment (i.e. not in a {shiny} app) if
one desired to do so. To facilitate this process a script from the UC Davis development team is
available to navigate through a static version of ithim_functions.R.

Read more about the Analytic Engine here.

2.6. Startup Scripts

The above sections have described bits of code that have been designed to be called multiple
times. For instance, you may want to run ITHIM with different scenarios, and the ITHIM TOOL
accommodates this. However, parts of the ITHIM TOOL only need to run a single time. These bits
of code are found in the global.R and preprocessing.R scripts. The global.R runs first, and thus
follows the R {shiny} convention of having one-time-only code reside in a file named “global.”
Consequently, global.R must reside next to the app.R script in the file system. Again, this follows
{shiny} convention. The global.R has a simple task, to load all the relevant packages, and then to
load the R scripts with the functions the ITHIM TOOL requires. The order in which R scripts load
matters, even though the bulk of R scripts only contain function definitions. This is because the
preprocessing.R script requires functions from other scripts.

The preprocessing.R script importantly sets up all the pre-established data for the ITHIM TOOL. It
loads all the csv data files, including values for various ITHIM parameters; it also runs a data
integrity check (to detect if any bit rot has occurred); and it loads the png files for the infographic.
This draws out an important distinction. The bulk of the ITHIM TOOL has hitherto relied on a list
object named l (created in run)6 , however another important list object exists in this {shiny} app, d.
This latter list object stores all the data loaded into the RAM by preprocessing.R. This data is not
changed once it has been created. In turn, this allows the ITHIM TOOL to run multiple scenarios
without the worry of changing the core bits of data that stay consistent from scenario to scenario.
For instance, the names of the regions that the ITHIM TOOL uses stays the same irrespective of
the scenario.

Chapter References

1. Whenever the term “ITHIM TOOL” appears, it refers to the “standalone” tool without the

contextual content (Home Page, About, Decision Support, User Support).

2. Note, the app.R file is downloadable from our website.

https://adv-r.hadley.nz/vectors-chap.html
file:///C:/Users/Noneof/Documents/HealthLinks/ARB/Project/UserSupport/ToolDocs/build/html/ithim_fn.html
https://en.wikipedia.org/wiki/Data_degradation
https://cal-ithim.org/ithim/CaliforniaITHIMdevelopers.zip

16

3. Please refer to this webinar for a basic introduction to {shiny} modules.

4. The shiny::tagList() is invoking the function tagList() from the {shiny} package. This is both

working R code and a shorthand used in this documentation to specify the package and
function.

5. If what a “baseline multiple” is not clear to you, please see the general documentation about the

ITHIM. In short, this term signifies that we want to multiple current levels of walking or
cycling. More to the point, this term is not a “coding” term (which is the subject of the ITHIM
TOOL documentation), but is a term from the conceptual ITHIM.

6. The l ("el") object has nothing to do with preprocessing.R. It is covered in Chapter 5.

https://www.rstudio.com/resources/webinars/understanding-shiny-modules/

17

3. Reactive ITHIM

Much of the programming innovation of the ITHIM TOOL occurs in the tool_modules.R script. This
document reviews {shiny} Modules, the UI Function (User Interface), and the Server Function.

3.1. Modules

For those unfamiliar with {shiny} modules, reference materials produced by R Studio are available:

 Webinar
 Introductory article

We begin to explore {shiny} modules by focusing on the introduction of a new function, NS(), into
the code1 . This function reserves a “namespace” throughout the shiny module, allowing multiple
instances of a module to exist simultaneously (presuming that each is given a unique ID). While the
use of {shiny} modules in the California ITHIM project differs from this classic use-case of multiple
instances, the fact remains that you could run multiple instances of the ITHIM TOOL on the same
webpage if you so desired. In which case, you would need to be able to identify which copy of the
UI interacts with which copy of the Server function. Therefore, by utilizing NS() and reserving a
“namespace,” one can effectively label each function so they may communicate and share data
with their proper corresponding partner. In the app.R script, you’ll note that we’ve used the name,
"TOOL" (see the code chunk below).

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Selections from the app.R script
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

the ui
ithim_toolUI("TOOL")

the server
callModule(ithim_tool, "TOOL")

Let’s continue by examining the use of NS() and its constituent bits of code in the UI function. The
following code chunk reveals three distinguishing features of {shiny} modules as they regard the
UI function.

1.
ithim_toolUI <- function(id){ ... }

2.
ns <- NS(id)

3.
uiOutput(ns("user_choice")),

file:///C:/Users/Noneof/Documents/HealthLinks/ARB/Project/UserSupport/ToolDocs/build/html/reactivity.html%23rx-modules
file:///C:/Users/Noneof/Documents/HealthLinks/ARB/Project/UserSupport/ToolDocs/build/html/reactivity.html%23rx-ui
file:///C:/Users/Noneof/Documents/HealthLinks/ARB/Project/UserSupport/ToolDocs/build/html/reactivity.html%23rx-server
https://www.rstudio.com/resources/webinars/understanding-shiny-modules/
https://shiny.rstudio.com/articles/modules.html
file:///C:/Users/Noneof/Documents/HealthLinks/ARB/Project/UserSupport/ToolDocs/build/html/reactivity.html%23ns

18

In the first sample line of code, the UI function defines its only argument (or “formal”) as id. In the
second line, the NS() function takes id and returns a new function created around id. This new
function ns() is then utilized in the third line to retrieve the "user_choice" from the Server function.
In short, this last step facilitates this UI function to share data with a Server function—and not just
any Server function, but the one with the same id.

Correspondingly, the Server function also differs from the typical {shiny} app by integrating code
needed for modularity.
1.
ithim_tool <- function(input, output, session){ ... }

2.
ns <- session$ns

Here, the function definition of the ithim_tool Server requires the argument (or formal) session. The
session refers to a semi-permanent bit of information used between the user’s browser and the
server. In this case, it appears to be holding onto the relevant “namespace” information. The
second line retrieves the ns() function we created in the UI. The ns() function needs to be retrieved
in the Server function in an effort to mimic the UI as renderUI() functions utilize ns() in much the
same fashion. If this part is unclear, please refer to the section below on the renderUI().

In summary, the NS() function and its constituent bits of code are the key mechanisms by which
modularity is implemented in {shiny}. Please be conscious that as renderUI() functions are added to
the ITHIM TOOL that outputs must necessarily be wrapped in ns() functions (for example, see the
code chunk below).

output$user_choice <- renderUI(
 selectInput(
 inputId = ns("chosen_scenario"), # ns() called.
 label = "Scenarios",
 selected = "CARB Scoping Plan (2030)",
 choices = d$main_choice,
 width="100%"
)
)
TIP: Spend some time looking at the tool_modules.R script. Do a search (ctrl+f or cmd+f) through
the document, and locate all the instances of NS() and ns().

3.2. UI Function

The UI function returns a shiny::tagList() object, i.e. HTML script stored in an R list object. It has a
fairly simple structure: two fluidRows, with the second row being divided into two columns. The
first fluidRow merely displays the title, and loads ithim_tool.css stored in the tool_files directory.
The second row is admittedly complex. It begins with a lengthy bit of CSS (see the fluidRow
argument style).2 Next it creates the first, left-hand side column with a width of 4. This column is
where the user selects their model parameters, hence it includes some HTML tags for labels (e.g.
tags$h3("Make Your Selections", ...)) and calls to the uiOutput function. Rather than detailing the way

https://adv-r.hadley.nz/functions.html#function-fundamentals

19

in which the uiOutput and renderUI functions are utilized in the ITHIM TOOL here, we’ll reserve
that discussion for the Server function when we’ll see where it originates in the code.

Model Selection Panel ----
column(
 width = 4,
 ...)

Finally, the second column, at a width of 8, produces the output. This “output” actually includes
four possible components: (1.) a message about the integrity of the data ("data_integrity"), (2.) a
message about quality of data uploaded by the user ("msg"), (3.) the title of the output ("title"), and
(4.) the content ("vis"). While these four output components are not described here in length,
readers should note that the bulk of the data integrity check happens in the preprocessing.R file,
the code that produces the message exists in the shiny_functions.R file, and the last two items are
produced in the Server function.

Output Panel ----
column(width=8,
 offset=0, # see docs on column()
 style=
 paste(
 "background-color: white; ",
 "color:",
 colores[5], # this is just a character vector of hex colors.
 "; "
),
 uiOutput(ns("data_integrity")), # (1.)
 uiOutput(ns("msg")), # (2.)
 uiOutput(ns("title")), # (3.)
 uiOutput(ns("vis")) # (4.)
)

3.3. Server Function

Unlike the UI function, the order of the Server function is arbitrary. Indeed, as {shiny} is reactive,
each component of the Server function may be called upon conditionally. As such, this section will
describe each object or event handler inside the Server function by its category.

3.3.1. reactiveValues

The tracker is the only reactiveValues object in the whole of the Server function. We placed the
tracker at the beginning of the Server function to suggest to future code maintainers the
importance of it as backbone to the program. Indeed, as users click on various options in the model
selections panel in the UI, it may trigger certain bits of information to be stored in the tracker. For
instance, if the user would like to see the “High” detail tables, the user implicitly wants to look at
one of the many possible “disease” tables (i.e. HTab3). In this case, the tracker is notified that the

20

user wants to view a specific disease table by assigning a boolean value to the tracker, i.e.
tracker$specific_disease <- T.

3.3.2. reactive

There are two reactive function calls in the Server function, isolate_geography and run. The former
behaves conditionally based on the choice of the user (i.e. depending on input$chosen_scenario). It
then attempts to pull an array of regions (e.g. the San Francisco Bay Area or California). From here it
retrieves the geographies which are sub-units of regions. Depending on the baseline/scenario
chosen, these regions and geographies are sourced from different places (e.g. the default narratives
csv in tool_files).

The second reactive function creates run, perhaps the most important reactive value. The object run
takes all the inputs the user has selected, assembles it in a manner legible to the Analytic Engine,
and then runs the Analytic Engine. (See more on the Analytic Engine here.)

The reactive that creates the run object begins by determining what inputs it needs as requisites to
operate correctly (see req() calls), which in turn depends on the value of the input$chosen_scenario.
The following set of if-statements (see the code chunk below) conditionally produces a baseline
object and a scenario object. These objects include the standard ITHIM input data, variably
including the “Per Capita Mean Daily Travel Distance” and possibly the “Proportion of Vehicle
Miles by Mode and Facility Type.” (The latter occurs when the User Upload scenario has been
selected.)

User Upload Scenario
if(input$chosen_scenario == "User Upload") { ... }

Baseline Multiples Scenario
else if(input$chosen_scenario == "Baseline Multiples") { ... }

Low Carbon Driving Scenario
else if(input$chosen_scenario == "Low Carbon Driving") { ... }

Either CARB Scoping Plan or CSMP Scenario
else if (input$chosen_scenario %in%
 c("CARB Scoping Plan (2030)",
 "Caltrans Strategic Management Plan (2020)")) { ... }

Fixed Time Scenario
else if(input$chosen_scenario == "Fixed Time") { ... }

One of the remaining Default Scenarios
else { ... }

Importantly, the baseline and scenario objects are imbued with “attributes,” namely the
"scenario_type". This attribute instructs the Analytic Engine (i.e. the functions in ithim_functions.R)
on how to handle these inputs. There are 4 possibilities for "scenario_type":

file:///C:/Users/Noneof/Documents/HealthLinks/ARB/Project/UserSupport/ToolDocs/build/html/ithim_fn.html
https://adv-r.hadley.nz/vectors-chap.html#attributes

21

 "user_defined"
 "multiples"
 "default"
 "absolute_time"

The manner in which these scenario types are processed is left to the documentation on
ithim_functions.R. Based on these four scenario types, the Analytic Engine will utilize a different
algorithm (i.e. different bits of code). An example of a baseline object being imbued with the
"default" value in the attribute "scenario_type" is presented below.

attr(baseline, "scenario_type") <- "default"

Once the baseline and scenario objects have been constructed, run then constructs a geography and
region object. Again, both of these are selected by the user from a list. These selections are derived
from a list of possible geographies created earlier by the isolate_geography reactive value.
Immediately after, a p object is created, which merely stores a value for the car miles being
substituted in this model run.

At this penultimate stage, we compile all the objects we’ve made inside run and place them in a list
object named l (see more here).

l <- list(
 baseline = baseline, # the baseline created above.
 scenario = scenario, # the scenario created above.
 fRegion = region,
 fGeography = geography,
 fYear = input$chosen_year,
 table_units = "default", # regards footnotes for Tables.
 p = p,
 is_formatted = F
)

Left un-presented in the code chunk above, we also append() some parameters regarding the
“Units Selection.” If the reader inspects the model selection column in the UI, they should note that
users are given choices as to how the products of ITHIM are relayed in terms of units: Is the mean
or median calculated? Are the distances in kilometers or miles? What are the time units? In days,
weeks, or by year? The reader will note that the “Units Selection” only matters if the output will be
a table or a graph.

Finally, this list is submitted to the Analytic Engine by invoking a series of function calls originally
defined in ithim_functions.R. (Note, the order does matter.)

l <- fn_prep(l)

l <- fn_distances(l)

l <- fn_scenario_time(l)

file:///C:/Users/Noneof/Documents/HealthLinks/ARB/Project/UserSupport/ToolDocs/build/html/ithim_fn.html%23l-obj

22

l <- fn_pa_quantile(l)

l <- fn_pa_paf(l)

l <- fn_pm_paf(l)

l <- fn_rti_paf(l)

l <- fn_burden_causes(l)

l <- fn_monetization(l)

l <- fn_carbon_emissions(l)

l <- fn_units_conversion(l)

The run reactive value thus concludes by returning a list object with all the parameters created in
run as well as the products of the calculations in the Analytic Engine.

3.3.3. observeEvent

The ITHIM TOOL has three event handlers, all of which are observeEvent type handlers.
The first as written in tool_modules.R reacts to changes to input$chosen_scenario. Essentially, it aids
in the feature of the ITHIM TOOL that allows users to upload their own data. In order to
accommodate this feature, the tracker keeps track of whether the TOOL should render the user
upload widget by storing a boolean value in tracker$ready_for_user. If it’s true, the user upload
widget will appear, otherwise it will not be produced.

Relatedly, the next observeEvent handler reacts to changes to input$user_upload (i.e. if something
has been uploaded to the ITHIM TOOL). If it does, this handler first splits up the csv by
scenario/baseline, and then goes through a series of checks on the quality of the data uploaded.
The checks inquire of the upload: Is it only one file? Is it blank? Does the csv follow the format the
Cal-ITHIM team established for data inputs? Part of this work is completed by functions in
shiny_functions.R. If the handler verifies all of this, it stores the user’s data in the tracker and sets
tracker$ready_for_user back to FALSE.

The last event handler reacts to changes in input$chosen_detail, informing the tracker whether or
not we need a “specific disease” (any specific disease!) to be calculated by the Analytic Engine. This
only occurs if the chosen_detail is high. To see this in action, run the ITHIM TOOL and observe what
happens when you choose “tables” as your output at a “high detail.” From there, a new selection
widget pops up, allowing you to specify what disease you’re interested in. Now, this event handler
doesn’t directly create this new selection widget, but it does trigger output$disease_select which
does indeed render it.

3.3.4. renderUI

23

This {shiny} function occurs repeatedly in the ITHIM TOOL. The renderUI function is utilized
whenever the ITHIM TOOL conditionally produce a “widget” or prints out an “output”. If you
inspect the document outline of tool_modules.R, you should recognize a number of subheadings
titled “Input” and “Print”. These subheadings indicate the presence of a call to renderUI with the
express purpose of either producing a “widget” or some “output” (respectively).

Regarding “widgets3,” the simplest case is the very first one written in the script which produces
output$user_choice. Indeed, while the entire purpose of utilizing renderUI is to produce something
(widgets or outputs) conditionally, here we just produce a widget conditionally or not. However, in
the next implementation of renderUI (see the code chunk below), which creates output$user_input,
you’ll first notice a few calls to req() which demand some prerequisite values, and the presence of
an if-statement.

output$user_input <- renderUI({
 # require these two things...
 req(input$chosen_scenario)
 req(tracker$ready_for_user)

 # Look! An if-statement!
 if(input$chosen_scenario=="User Upload" &
 tracker$ready_for_user==T){
 tagList(
 fileInput(
 inputId = ns("user_upload"),
 label = "Select a file to upload.",
 multiple = F,
 accept = "text/csv"
),
 tags$br()
)
 }
}
)

In essence, this code states, if the chosen_scenario is a user upload, and the tracker says it’s okay to
create a widget, then produce a fileInput() widget3 .

The renderUI function also serves another purpose in the ITHIM TOOL, it “prints” things (i.e.
outputs) out to the screen. For instance, a renderUI is used to warn the user that their uploaded
data doesn’t fit the format as outlined by the UCD development team. (You’ll note that in the code
chunk below, the actual creation of the content is not included–the content being the warning
message. Rather, the content is created elsewhere and then this renderUI prints that message to
the screen.)

output$msg <- renderUI({
 req(tracker$msg)
 if(!(is.na(tracker$msg)))
 tagList(

file:///C:/Users/Noneof/Documents/HealthLinks/ARB/Project/UserSupport/ToolDocs/build/html/reactivity.html%23fileinput

24

 tags$div(
 tags$p(HTML(tracker$msg)), # msg is created elsewhere.
 class = "error_msg"
)
)
})

The above code chunk requires tracker$msg. It then inspects tracker$msg for some text. If text is
present, it prints that text out to the screen with tags$p(HTML(tracker$msg)).

renderUI Visualizations

Most of the “Print” oriented renderUI() functions are fairly straight forward. However, the
output$vis object requires additional explanation. The output$vis object is designed to take the
output of run (i.e. the Analytic Engine), take the user’s parameters for the type output desired (e.g.
high detail graphs), and then generate some sort of visualization using functions from
visualizations.R.

It begins by obtaining the output of run, and storing it into the list object l (see more here). It then
appends a default value for specific_disease and the chosen type of visualization. It then proceeds
by appending the level of detail based on the user’s specifications. In the next series of if-else
statements, the function creates the visualization using functions from visualizations.R based on
the type of output selected by the user (i.e. tables, graphs, infographic, or summary report). The
functrion generates a tagList object with bits of HTML. It may be instructive to place a browser()
call before output$vis is returned, that way you can View() the variable o to get a sense of what is
included.

In the case of the summary report or the tables, the process of making the visualization is
starightforward. The function that creates output$vis relies on the functions from visualizations.R.
However, both the graphs and the infographic require a bit more work. Both of these outputs rely
on functions from visualizations.R, but importantly need to render the visualizations within the
function local(). The important distinction between these two sets of visualizations can be
illustrated by the composition of the actual visualization. The end products of both the summary
report and the graphs are simply composed of HTML and CSS, whereas both the infographic and
the graphs are {grid} objects rendered to produce an image (e.g. a PNG). The need to render a
{grid} object requires the creation of an “environment” separate from the rest of the ITHIM TOOL.
As such, they are rendered in a local() function call.

file:///C:/Users/Noneof/Documents/HealthLinks/ARB/Project/UserSupport/ToolDocs/build/html/ithim_fn.html%23l-obj

25

3.3.5. downloadHandler

The final component of the Server function is the downloadHandler. which focuses on downloading
the contents of Tables outputs as a csv file.

The “Downloads” are actually split into two parts, the creation of a simple button (printed
conditionally based on the type of output), and the literal downloadHandler. The former is a simple
implementation of downloadButton. Whereas, the literal downloadHandler is considerably more
complex.

In short, the csv downloadHandler takes three arguments, a filename, some content, and a description
of what the contentType is.

output$CSV_prep <- downloadHandler(
 filename = function() { ... },
 content = function(fname) { ... },
 contentType = "application/csv"
)

The creation of the content is the most complex part. It takes the output of run and then generates a
series of tables fit to be bound together into a single csv document, alongside all the
“breadcrumbs” or model parameters. In effect this means there are a number of consistent
columns: the scenario name, the name of the table, the geography, etc. However, this also means
there are some inconsistent columns. Rather, each table has its own list of headers, as such there is
no set of consistent headers that are shared for this part of the tables. Therefore, each column is
merely specified by a letter in the alphabet. The headers for each table are thus embedded in the
table. The structure ends up looking something like this:

CSV Download Sample

Scenario Geography etc. Table a b c etc.

CARB
Scoping
Plan

California …

Per Capita
Mean Weekly
Active Travel
Time
(minutes) by
Age and
Gender

Sex Age.Group Population …

CARB
Scoping
Plan

California …

Per Capita
Mean Weekly
Active Travel
Time
(minutes) by
Age and
Gender

Male 00-04 1211552 …

3.3.6. Table of Reactive Components

26

Server Function

Type Key Variable Purpose

reactiveValues tracker
Store values for other reactive functions
to check.

reactive isolate_geography
Generate a list of possible geographies
from which users may choose.

reactive run
Utilizing user parameters, run the
Analytic Engine.

observeEvent input$chosen_scenario
Prepares tracker for user upload feature
based on key variable.

observeEvent input$user_upload
Processes csv that a user uploads with
narratives.

observeEvent input$chosen_detail
Prepares tracker for cases where a
specific disease is desired.

renderUI output$user_choice
Creates primary Scenario selection drop
down widget.

renderUI output$user_input
Creates User Upload widget for csv
upload.

renderUI output$msg
Generates an error notice depending on
if tracker$msg is present.

renderUI output$data_integrity
Creates HTML message if data integrity
check fails.

renderUI output$user_base_select
Creates a widget for baseline selection
for User Uploads.

renderUI
output$user_scenario_selec
t

Creates a widget for scenario selection
for User Uploads.

renderUI
output$user_geography_sel
ect

Creates a widget for geography
selection for User Uploads.

renderUI output$absolute_time_walk
Creates a widget for entering Fixed
Time walking.

renderUI output$absolute_time_bike
Creates a widget for entering Fixed
Time cycling.

renderUI output$multiples
Creates a widget for entering multiples
of baseline for walking, cycling, and
transit.

renderUI output$geography_select
Creates a geography selection widget
for non-User Upload scenarios.

27

Server Function

Type Key Variable Purpose

renderUI output$year_select
Creates a 5-year increment selection
widget between the years 2010-2050.

renderUI output$data_vis_select
Creates a selection widget for data
visualization.

renderUI output$detail_select
Creates a level of detail selection
widget.

renderUI output$units_centrality
Creates a units of centrality radio
button.

renderUI output$units_active_travel
Creates a unit of active travel radio
button.

renderUI output$units_travel_dist
Creates a unit of travel distance radio
button.

renderUI output$disease_select
Creates a specific disease selection
widget for high-detail tables and graphs.

renderUI output$title
Creates an HTML title for the output
panel, describing the page as tables,
graphs, summary report, or infographic.

renderUI output$vis
Creates the content for the output
visualization (see documentation).

renderUI output$info_box
Creates the informational box in the
model selection panel that describes the
scenario.

downloadHandler output$CSV_prep
Creates the csv for the download button
to serve.

renderUI output$downloadData Creates the download button.

Chapter References

1. Strictly speaking, it appears that NS() is a “function factory”.

2. CSS styling is divided between the ithim_tool.CSS and the .R script.

3. A number of “input” functions (which we’ve been largely describing as “widgets”) are utilized in
tool_modules.R, however their uses are not described in this documentation. Indeed, there
exists ample documentation on {shiny} inputs online.

file:///C:/Users/Noneof/Documents/HealthLinks/ARB/Project/UserSupport/ToolDocs/build/html/reactivity.html%23id1
https://adv-r.hadley.nz/function-factories.html
file:///C:/Users/Noneof/Documents/HealthLinks/ARB/Project/UserSupport/ToolDocs/build/html/reactivity.html%23id2
file:///C:/Users/Noneof/Documents/HealthLinks/ARB/Project/UserSupport/ToolDocs/build/html/reactivity.html%23id3
https://www.rdocumentation.org/packages/shiny

28

4. User Upload

In the previous section, we explored the tool_modules.R script, examining the modularity of the
ITHIM TOOL, the UI function, and the Server function. However, we now discuss how the user of
the TOOL submits their own data for analysis.

In general, users may upload their own data following the (csv) template provided under the “User
Support” page on the (full) California ITHIM website. That data is then directly received by the
{shiny} server and undergoes a series of checks.1 The code for handling User Uploads lies in two
places, in the tool_modules.R, but also in shiny_functions.R. In fact, the latter script is largely geared
towards the User Upload (although, its general purpose is to provide a place to define functions
that thematically sit outside of ithim_functions and visualization.R.)

The User Upload begins in the tool_modules.R with a fileInput call (in output$user_upload). Upon a
successful upload, an observeEvent is triggered (see the comment # oE: User Narratives ---- in
tool_modules.R). After an error check, it reads the csv into a data.frame. This new data.frame is then
passed to a few functions in shiny_functions.R.

4.1. shiny_functions

 fn_narrativeSplitter
 fn_user_data_verify
 fn_pullRegions
 fn_user_data_subs


The function fn_narrativeSplitter is utilized both in preprocessing.R and in shiny_functions.R. It
provides a means of doing a basic error check for the correct column headers, splits them by the
Scenario_ID, and then returns these data.frames as a list to the observeEvent in tool_modules.R.
However, the next line simply calls the next function in shiny_functions.R, fn_user_data_verify.
This last function has the role of going through the User Upload and checks for a number of
common errors. If there are errors, upon encountering the first error, fn_user_data_verify
immediately exits and returns an error message (in out) that is passed back to the aforementioned
observeEvent, triggering a message that appears in the TOOL (see output$msg) and disabling the
TOOL until the issue is remedied.

There are 12 possible errors, examples of which are provided in the User's Guide & Technical
Manual Table 2.5). More details of errors are listed in user_error_codebook.csv . The in-code
comments also provide a fair amount of information. Note that in fn_user_data_verify each possible
type of error contains two parts: a test to see if there is an error, and then the returning of an error
message (or not). The error message is often customized to reflect the variables where the error is
occurring (using fn_keyworder to substitute variable names into the messages stored in
user_error_codebook.csv). Generally speaking, this structure is followed for most of the error
checks.

If the User Upload passes the verification step, then the user’s data is passed to the
fn_user_data_subs function to fill in any missing data. Indeed, the ITHIM TOOL accepts a limited

file:///C:/Users/Noneof/Documents/HealthLinks/ARB/Project/UserSupport/ToolDocs/build/html/user_upload.html%23security

29

amount of missing data, and then backfills it with the baseline data that we have for that
geography. Also in this function, the units for the data are corrected to match the rest of the
default used by the ITHIM TOOL. This data is then returned and passed to the reactiveValues
object named tracker.2

Chapter References

1. Checking for malicious code is outside the scope of our R programs and threats are minimized

by not storing user uploaded data on the {shiny} server (rather, everything is in the web
session).

2. Note, the function fn_pullRegions has not been called yet. This function is utilized (much like

fn_narrativeSplitter) on canned data as well as User Uploaded data. To see it in action, check
out isolate_geography in tool_modules.R.

file:///C:/Users/Noneof/Documents/HealthLinks/ARB/Project/UserSupport/ToolDocs/build/html/user_upload.html%23pullregions

30

5. ITHIM Functions

The functions defined in ithim_functions.R represent the heart of the ITHIM. The functions in this R
script are divided into two groups, setup and core functions. The setup functions prepare the input
data or create functions necessary for the proper functioning of the core functions, whereas the
latter conduct the primary calculations of the ITHIM.

The conceptual detail of how the ITHIM operates is described in the User's Guide and Technical
Manual. This documentation simply describes notable and higher-level coding approaches and the
organization of the code.

The functions in ithim_functions.R are defined in the order in which they need to be executed—this
is particularly the case for the core functions.1 For those readers familiar with the “Long Engine,”
the core functions should be quite familiar—indeed, these scripts are nearly identical. With the
exception of the first two functions (is.nan.data.frame and fn_age_groups), all the functions in this R
script require the input l, which is a list object that gradually gains elements as it is passed from one
ITHIM function2 to another. Initially, the l object contains only the parameters it is assigned in the
run reactive function in tool_modules.R. This includes such things as the baseline data, the scenario
data, the region, the geography, the year, the car miles substitution (p), and the measure of
centrality (i.e. mean or median).

A summary description of each function is provided in the table below. While a basic
understanding of the ITHIM and R should be a sufficient foundation for deciphering the
ithim_functions.R script, a few points will be addressed here for clarity.

5.1. Attributes

Attributes in R serve as a means to attach metadata to some “object,” with an object being a
variable like a data.frame, vector, or list. Essentially, these two bits of data (baseline and scenario)
are treated as being instilled with a particular attribute. This particular attribute for the baseline
and scenario data answer the questions: Is the data user defined? Is the data meant to be
augmented by some multiplier? Should the data be processed normally?

In the ITHIM TOOL, by applying metadata in the form of an attribute (in run), we help functions (in
ithim_functions.R) determine how to handle the data. With that said, future iterations of ITHIM
functions could reconsider the approach taken in the ITHIM TOOL by either stripping it of its
pseudo-object–orientation or fully implementing object-orientation. (The advantages of object-
orientation lead to simpler code to read and a simpler organization scheme, but this occurs at the
cost of comprehension by novice programmers.) The following code chunk demonstrates a
conditional statement that does something if the data was uploaded by the user:

if(attr(l$scenario, "scenario_type") == "user_defined") { ... }

In the above code chunk attr() is called to retrieve the attribute for the “key” "scenario_type" of the
piece of data stored in l$scenario. If attr() returns the value "user_defined", the program does

https://adv-r.hadley.nz/vectors-chap.html

31

something. The something could be some bit of code that only runs when the data is user defined.
(Note, the use of ... is not recognized R code, but rather is a shorthand used here to indicate some
code belongs here.)

5.2. The l ("el") Object

It should be noted that aside from “attributes,” the ITHIM TOOL3 also mimics object-orientation
by passing the list object l through most of the TOOL, from run all the way through its endpoints,
such as output$vis or output$CSV_prep (including the functions in ithim_functions.R). Rather than
passing specific pieces of data from one function to another as declared arguments (or formals), it
bundles everything up into a single list object whose breadcrumbs persist through the entire
lifespan of the TOOL. (For instance, the data.frame stored in l$rti_RR_mode is first created in
fn_rti_paf, but continues to exist long after it is finally used in fn_data_framer.) This approach greatly
simplifies calling upon the breadcrumbs later in the TOOL.

5.3. Table of ITHIM Functions

Function Name Arguments Purpose

is.nan.data.frame x - data.frame Adds functionality to is.nan to serve a data.frame.

fn_age_groups
x - integer
orcharacter
vector

Converts standard age integers to age ranges.

fn_prep l - list
Prepares the l list object by subsetting data from d
and inputs from run.

fn_distances l - list

Inputs baseline per capita mean annual distances
(miles) by mode (walk, bike, car-driver, car-passenger,
bus, rail, motorcycle, and truck) and calculates
distances for the scenarios: multiples of the baseline,
California Strategic Management Plan, and 2017
California Air Resources Board Scoping Plan Update.
Increases in walking, cycling and transit replace miles
traveled by cars.

fn_scenario_time l - list

Calculates per capita mean weekly minutes of active
travel physical activity based on walking distances
divided by average walking speed (3 mph) and cycling
distances divided by average cycling speed (12 mph)

fn_pa_quantile l - list

Calculates the age and sex specific per capita mean
physical activity times for walking and cycling at the
10th, 30th, 50th, 70th, and 90th percentile of the
physical activity distribution based on the overall
mean, standard deviation of walking and cycling, and
the inverse transform of their lognormal values. The

32

Function Name Arguments Purpose

physical activity times are then weighed by age-sex
specific MET values based on an average of 3 METS
for walking and 6 METS for cycling.

fn_pa_paf l - list

Calculates the age-sex-and disease specific
population attributable fraction based on disease-
specific dose response coefficients and the change in
physical activity METS from baseline to scenario
travel.

fn_pm_paf l - list

Calculates the change in ambient mean PM2.5
concentration (air basin) based on changes in car
emissions from baseline to scenario and the
concentration response coefficient for cardiovascular
disease, cardio-pulmonary disease, and lung cancer.

fn_rti_paf l - list

Inputs baseline fatal and serious injuries stratified by
facility type (local, arterial, and highway) and ravel
distances by mode for each pairwise combination of
striking vehicle and victim vehicle, and outputs the
number of scenario injuries, population attributable
fraction, and the relative risk by mode of victim due to
the change in baseline and scenario travel distances.

fn_burden_causes l - list

Inputs the age-sex-disease specific burden of disease
and corresponding population attributable fraction to
calculate the change in deaths, years of life lost, years
living with disability, and disability adjusted life years.

fn_monetization l - list

Calculates willingness-to pay estimate based on
inputs of the change disease-specific numbers of
death (scenario vs. baseline), which is multiplied by
the value of a statistical life (default value $7.4
million). Calculates the cost of illness based on the
disease-specific population attributable fraction,
which is multiplied by share of national costs in
constant 2010 dollars, prorated to the population of
the geographic area of analysis.

fn_carbon_emissions l - list

Calculates the aggregate change in CO2-equivalent
car emissions based on the CO2 emissions factor
(CO2/mi), the change in per capita mean car travel
distances (baseline vs. scenario) multiplied by the
population at the scenario time horizon.

fn_units_conversion l - list

Converts per capita mean distances by mode from
miles to kilometers (1.62 km/mi); Expresses per capita
mean (or median) distances on a daily, weekly, or
annual basis (365 days per year, 52 weeks per year);

33

Function Name Arguments Purpose

Converts per capita mean active travel time between
minutes per day to minutes per week. Expresses
central tendency of active travel time as a per capita
mean or median, using the transverse normal function
of the log of the mean and standard deviation).

Chapter References

1 . Examine the run reactive (see here). In the run reactive, the functions from ithim_functions.R are

called upon sequentially.

2. “ITHIM function” largely refers to any of the “core” functions in ithim_functions.R, although there

is an exception in this specific case for fn_prep.

3. This section about the l object refers to the ITHIM TOOL as a whole, and not simply about

ithim_functions.R.

file:///C:/Users/Noneof/Documents/HealthLinks/ARB/Project/UserSupport/ToolDocs/build/html/ithim_fn.html%23id1
file:///C:/Users/Noneof/Documents/HealthLinks/ARB/Project/UserSupport/ToolDocs/build/html/reactivity.html%23rx-run
file:///C:/Users/Noneof/Documents/HealthLinks/ARB/Project/UserSupport/ToolDocs/build/html/ithim_fn.html%23id2
file:///C:/Users/Noneof/Documents/HealthLinks/ARB/Project/UserSupport/ToolDocs/build/html/ithim_fn.html%23id4

34

6. Visualizations

In this chapter we’ll examine the functions in visualization.R. While these functions are not
necessary for the proper working of the ITHIM, they are responsible for the attractive graphics
and tables. As described in the “Overview”, there are five groups of functions present in this script.
This chapter will explore each group, beginning with the root function group in this script that
generates a list of data.frames.

6.1. Group 1: The Root

 fn_specific_disease
 fn_dataframer

These 2 functions generate the data.frames necessary to draw the tables and graphics in the rest of
the visualization.R script. The most important function here is fn_dataframer as it returns a list of
formatted data.frames. This step is an intermediary between the generation of raw output from the
Analytic Engine (Chapter 2) and the HTML tables or graphics users experience in the ITHIM
TOOL. As described previously, fn_dataframer will produce a list of either Summary, Medium, or
High detail tables, each with a unique name, like STab4 (Summary Table 4). In the final step, each
data.frame in the list object is tagged with an attribute indicating this unique identifier (e.g. STab4), as
well as the printable “title” of the data.frame (as described later).

The functions in visualization.R are called upon in the creation of the output$vis {shiny} object.
However, this is not always the case, as users may be interested in downloading the tables (i.e. the
data.frames) in the form of a CSV file. In which case, the functions in this group are also utilized, as
the process of generating a CSV file re-creates the data.frames from scratch each time it is called.
Indeed, the {shiny} object output$CSV_prep (of tool_modules.R) is created in order to facilitate the
download of a CSV file. This is notable as it operates slightly differently than in the creation of
output$vis.

These two {shiny} objects differ, fundamentally, when calling upon the functions in visualization.R
to generate High detail tables. In the ITHIM TOOL readers will note that when both “tables” and
“high” detail are selected, that a new drop-down menu widget is generated which allows users to
select a specific disease. Whereas, when users then hit the “download CSV” button, the generated
CSV file contains every possible specific disease. This is possible courtesy of the fn_specific_disease
function. The {shiny} output$CSV_prep object (1.) obtains the results of run, (2.) obtains the results
from fn_dataframer, (3.) runs a loop to get the data.frames for each disease by utilizing
fn_specific_disease (see the code chunk next page).

file:///C:/Users/Noneof/Documents/HealthLinks/ARB/Project/UserSupport/ToolDocs/build/html/overview.html%23overview-vis

35

Figure 6.1. The image on the top demonstrates a data.frame of STab1 , whereas the image on the
bottom demonstrates STab1 as an HTML table. The image on the left is an example of the object
returned by this function group (as presented in RStudio using View()). The latter is an example of
an HTML table discussed in the subsequent function group.

retrieve data.frames sans specific disease
df_list <- fn_dataframer(l)$df_list

l$specific_disease_title <- T

retrieve ALL specific disease tables
df_list2 <- lapply(seq_len(nrow(d$causes)), function(i){
 l$specific_disease <- d$causes[i,]
 fn_specific_disease(l)$specific_disease_df
})

Now that the purpose of both fn_dataframer and fn_specific_disease has been reviewed, we’ll now
explore how each of these functions operate. The fn_dataframer begins by taking the results of run

file:///C:/Users/Noneof/Documents/HealthLinks/ARB/Project/UserSupport/ToolDocs/build/html/_images/STab1_raw.png
file:///C:/Users/Noneof/Documents/HealthLinks/ARB/Project/UserSupport/ToolDocs/build/html/_images/STab1_html.png

36

(i.e. the results of the Analytic Engine) as a list object (l) as its only argument. Its first task is to
figure out the title for each table that will be created. It uses a template from
“tool_table_strings.CSV” in the directory /tool_files. Specifically, it draws from the column labeled
“title.” Readers should note that in this template, that there are certain words wrapped by curly
braces, {}. The use of curly braces in the ITHIM TOOL indicates that some sort of string
substitution will occur. For instance, Summary Table 2 (STab2) has the template title “Per Capita
{centrality} {at_time_unit_ly} Active Travel Times (minutes),” where the word “{centrality}” will be
replaced with either the word “Mean” or “Median”, and similarly “{at_time_unit_ly}” will be
replaced with “Daily” or “Weekly.” In order to do this we create a “lookup table” (a data.frame) and
then pass this along with the title template to the function fn_keyworder. In turn, fn_keyworder
utilizes regex to replace the matching terms in the template title with the lookup table values (see
the code chunk below).

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Create lookup table.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
lookup <- data.frame(
 key = c(
 "{centrality}",
 "{centrality2}",
 "{at_time_unit_ly}",
 "{td_unit}",
 "{td_time}",
 "{td_time_ly}",
 "{at_time_unit1}",
 "{at_time_unit2}"
),
 value = c(
 # For Table/Graph Titles
 centrality, # These are variables
 centrality2,
 at_time_unit_ly,
 td_unit,
 td_time,
 td_time_ly,
 at_time_unit1,
 at_time_unit2
),
 stringsAsFactors = F
)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Run table_str titles through
fn_keyworder to replace {keywords}.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
table_str <- fn_keyworder(table_str, lookup)

37

In the above code chunk, table_str is character vector containing the template titles of every
table/data.frame we’re about to construct. In the declaration of the lookup data.frame, a number of
variables are passed to column value that happen to share the same name as the key. Rest assured
these variables equate to strings with values such as “Median” or “Kilometers”.

Now that we’ve generated a vector of tailored table titles, fn_dataframer continues by entering a
set of conditional statements (i.e. if-else statements) based on the level of detail. In fact,
fn_dataframer only creates a set of tables/data.frames for one level of a detail at a time (e.g. the
Summary level). In each expression (of the conditional statement), fn_dataframer generates
between 4-6 data.frames (e.g. STab1, STab2, and so forth). It then places them in a list object named
core. At the end of fn_dataframer, it adds two attributes to each data.frame in core, df_id and df_name,
or the ID (e.g. STab2) and the name of the table (e.g. “Per Capita Mean Weekly Active Travel Times
(minutes)”). It closes by adding this newly created list of data.frames with two attributes each into
the argument l as df_list and returns l (see the code chunk below).

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Add the attributes of df_id and
df_name to each table in core.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
core <- lapply(seq_along(core), function(i){
 structure(core[[i]],
 df_id = table_str$id[i],
 df_name = table_str$title[i]
)
})

l$df_list <- core
l # return

(Note, the structure function is one way to add attributes to an object.)

Readers will note that in fn_dataframer, in the High level of detail, HTab3 is conditionally generated.
It will only be generated if output$vis is calling fn_dataframer as it needs just 1 disease. Otherwise, if
output$CSV_prep is calling fn_dataframer, it supplies an argument l$specific_disease that informs
fn_dataframer to skip the creation of HTab3. This occurs as output$CSV_prep needs to create
data.frames for every disease! Rather than running fn_dataframer multiple times, output$CSV_prep
simply runs fn_specific_disease multiple times.

The function fn_specific_disease does not do anything remarkably different from the other
data.frame creating components of fn_dataframer. It is supplied with the l object (generated by
run/the Analytic Engine), which also includes l$specific_disease, a data.frame with a single row. In
turn, this data.frame supplies fn_specific_disease with all the necessary information to construct a
specific disease data.frame. The one novelty fn_specific_disease presents is the option to create a
table title. If fn_dataframer is calling fn_specific_disease (i.e. the output is for output$vis), then we’ll
generate a title in fn_dataframer. Otherwise, output$CSV_prep will request fn_specific_disease to
generate the table titles (using the argument l$specific_disease_title).

38

In conclusion, both of these functions generate at least one data.frame with two attributes each.
The returned variable will the be list object l, with either the element df_list or specific_disease_df
disease appended to it. From here, every other function group will utilize the returned l$df_list to
create the appealing visualizations users are familiar with in the ITHIM TOOL, or output$CSV_prep
will utilize this returned l to generate a CSV file.

6.2. Group 2: HTML Tables

 fn_formattr_col
 fn_formattr_df
 fn_colspans
 fn_tableTagger
 fn_tableManager

The key function in this group is fn_tableManager. It calls other functions in this group. It is
however, the function that the {shiny} modules call in order to generate HTML formatted tables. As
with the remaining function groups, fn_tableManager relies on the list of data.frames generated by
fn_dataframer. It takes this list and then runs this list through fn_formattr_df and fn_tableTagger. The
first function, fn_formattr_df, and the related fn_formattr_col, have fairly straight forward purposes,
to convert numeric columns in each data.frame from fn_dataframer to character columns with those
numbers in a preferred, presentable format. For instance, the value 3.141592654 might be
simplified to 3.14. Whereas, the primary purpose of fn_tableTagger serves is to generate HTML
code to represent the tables (i.e. the data.frames).

The function fn_formattr_df formats a single a list of data.frames (in l$df_list). It begins by storing the
attributes of the data.frames it is going to format (as the formatting process deletes the attributes).
It then applies fn_formattr_col to each column of each data.frame, while renaming each column
name such that all periods are replaced by spaces (e.g. from “column.name” to “column name”).

39

Then, it reapplies the original attributes (i.e. the ID and table title). Finally, it conditionally fixes any
certain table cell values (namely dollar values that are much less than $1 Billion).

The function fn_formattr_col takes a double (the data type; in this case, a column from a data.frame)
and applies the base::format function to those (floating point) number values to make them more
aesthetically pleasing. In essence, it shortens long decimal values to shorter numbers (with less
than 3 digits following the decimal point). It will also replace NA values with the string "---", and
NaN values with 0.

Now that the number columns in the data.frames from fn_dataframer have been formatted to look
nicer, fn_tableTagger can turn the data.frame into an HTML table. However, before proceeding a
few caveats should be addressed. First, there is one feature that has been left in place in
fn_tableTagger that is not actually utilized: a citation system. Indeed, tables (including headers and
rows), may include a citation (a superscripted number and footnotes). In fact, fn_tableTagger still
checks for the presence of "XX" and will replace these values with a number if it is present.
However, as of this writing, none of the column or row headers contain the string "XX". Second,
some tables have spanning column headers (see figure below). As such, fn_tableTagger
accommodates this in the construction of the HTML tables.

Figure. An example of a spanning column header. Note how both “Deaths” and “DALYs” span

across two columns each.

The function fn_tableTagger begins by fixing geographies that are California counties by appending
the word “County” to it. It then enters a loop to create one table at a time. It stores some attributes
of the data.frame into variables to be utilized later. It then checks if it needs to build a spanning
column header; if it does, it calls fn_colspans, which takes values from the “spanning_header”
column in “tool_table_strings.csv” and splits this value into a useable data.frame. It then proceeds
through an algorithm to assign each value in the spanning header data.frame to a table row (i.e.
<tr>), and then generates the table header (i.e. <th>), all the while checking for citations along the
way. Otherwise, if no spanning column headers are necessary, a simpler approach is utilized to
make the table header. In both cases, the operative functions that actually generates the HTML
tags are tags$th and tags$tr.

Following the creation of headers, the table-making loop continues by creating table rows,
utilizing the tags$td function. Again, it checks for the presence of a citation. Next, the full title of the
table, with all the breadcrumbs (e.g. the geography), is created (as a string). Then, it checks for
footnotes. Finally, all the components are strung together in a list object. Here, the table title is
placed in HTML tags utilizing tags$h4, and the headers and rows are combined in
tags$table(tags$body(...)). If there are footnotes, they are added at this stage as well utilizing tags$p.
(The footnotes are derived from “tool_table_strings.csv”.) The function fn_tableTagger ends by
returning the l object with the new element tagList. (The {shiny} renderUI function can take this
tagList directly and then actually generate the HTML code in its final form.)

file:///C:/Users/Noneof/Documents/HealthLinks/ARB/Project/UserSupport/ToolDocs/build/html/visualization.html%23fig-colspans

40

6.3. Group 3: Graphs

 fn_plotter
 fn_graphManager

Before proceeding with this section, the reader should be familiar with the {ggplot2} package.
Grolemund & Wickham’s R for Data Science contains an introduction to {ggplot2}, however, read
Wickham’s ggplot2: Elegant Graphics for Data Analysis for a more detailed guide to the package.
Further, the cheatsheet on {ggplot2} may also be useful.

Unlike the Tables function group, the Graphs function group has no primary managing function. At
its heart, the graphs are actually generated in their own base::local environments in the {shiny} app
(and thus prevents the actual plot rendering from occurring in a function called in the global
environment). Essentially, in order to render plots iteratively, {ggplot2} requires its own empty
environment in a {shiny} app as it renders the images. Thus, the two functions defined in this
function group help set up the data to be rendered as a plot, but the actual plotting is conducted by
the function shiny::renderPlot, called in tool_modules.R.

for(ii in seq_along(o$objects)){
 local({
 local_i <- ii

 df <- o$objects[[local_i]]

 plotname <- paste(

https://r4ds.had.co.nz/data-visualisation.html
https://ggplot2-book.org/
https://www.rstudio.com/wp-content/uploads/2015/03/ggplot2-cheatsheet.pdf

41

 "plot",
 local_i,
 sep="")

 output[[plotname]] <- renderPlot({
 fn_plotter(df)
 })

 }) # end of local
} # end of loop

In the above code chunk (which occurs in tool_modules.R), the program iterates over a list of graph
data.frames (produced by the fn_graphManager which is discussed below). For each plot, a local
environment is created (in {shiny}). Eventually a new element is created in the output variable using
renderPlot and fn_plotter (the latter is also discussed below).
Now, let's return to beginning of the creation of graphs (in visualization.R) now that we understand
why the plots aren’t being rendered in any of the visualization.R functions. The function
fn_graphManager takes the output of fn_dataframer and then utilizes reshape to make it legible to
{ggplot2}. However, fn_graphManager is responsible for other things as well. Much like
fn_tableTagger it also creates the full title for each graph, appending such things as the geography.
It also adds an attribute to each data.frame that will supply fn_plotter with the information it needs
to either render a line plot or a bar plot. The function fn_graphManager also looks out for issues
with units (e.g. kilometers vs miles). It finally stores this information back into l as the element
objects, and then returns l.

The function fn_plotter on the other hand takes a data.frame as its argument (instead of l).
Fundamentally, what fn_plotter returns is the object created by ggplot2::ggplot(). However, what
happens in between is a matter that requires a brief explanation to casual {ggplot2} coders as in
most cases, casual {ggplot2} coders are not familiar with non-standard evaluation. In most plots,
{ggplot2} requires the names of certain elements of the graph, like what data represents the X and
Y axes, or what the labels should read. However, as fn_plotter must be generalizable, it requires
some dynamism. This does not present a problem for creating plot labels, but it does for accessing
the data for X and Y (i.e. the columns from the data.frame being submitted for plotting). In order to
get around this, we must first extract the relevant information about the columns to plot and then
supply them in a fashion that ggplot() can understand. In the following code chunk we demonstrate
the first part of this process by retrieving the column name for the X-axis. (Note, we arbitrarily
used the Spanish words for X and Y, “equis” and “igriega” respectively, to label these variables.
Also, please take note that the variable df is the data.frame argument supplied to fn_plotter.)

X-axis
Get the name of first column that fulfills these conditions:
it is a character & is not ScenarioName
equis <- names(which(!(names(df) %in% "ScenarioName") &
 sapply(df, function(x) is.character(x))))[1]

After this bit of code runs, equis is a single value in a character vector (i.e. a single string or word).
In order to dynamically insert these column names into ggplot to tell it to draw a graph, we have to
use the function aes_string (see the code chunk below). The function aes_string takes a string and

https://adv-r.hadley.nz/metaprogramming.html

42

then uses non-standard evaluation on this expression. In the case of the example code chunk
below, beside from evaluating equis we are also using the function reorder to change the order in
which bars are drawn on the plot.

ggplot(
 data = df,
 # use aes_string to pass name of column in quotes as arguments.
 aes_string(
 x =
 # read following as: reorder(`x_name`, `y_name`)
 paste0(
 "reorder(`", # reorder by size of y
 equis,
 "`, `",
 igriega,
 "`)"),
 y =
 igriega
)
) + ...

Hopefully it is self-evident that the above code chunk is only a snippet from the whole plotting
process for bar plots. At the end of fn_plotter, a ggplot() object is returned, and then rendered by
shiny::renderPlot. The renderUI for output$vis in tool_modules.R later constructs a tagList with the
title of the plot, a horizontal rule (i.e. <hr>), and a call to the recently created plots using
plotOutput(ns(nm).

6.4. Group 4: Summary Report

 fn_report_calc
 fn_reporter

The Summary Report of the ITHIM TOOL is a fairly straight forward visualization. Essentially it
creates an HTML table and fills it with either an image-icon or some text. The text is drawn from a
template file, “report_template.csv”, which contains a row for each row of the Summary Report.
The text contained in that template has certain keywords that can be substituted with the
scenario values. For instance, the first row describes an increase (or decrease) in the current levels
of walking and cycling. The numbers are present somewhere in the output of run/the Analytic
Engine, and which are then taken to replace the keywords in the report template. In order to
accomplish this, the ITHIM TOOL needs to make use of fn_keyworder again, and a series of if-else
conditional statements and comparators. For instance, if the value for the number of minutes of
active travel is positive, the report should read an “increase” in active travel, whereas a negative
value would have the report reading a “decrease” in active travel. This simple algorithm occurs in
fn_report_calc, whereas the HTML is stitched together in fn_reporter.

43

6.5. Group 5: The Infographic

 fn_ig_DataAssembler
 fn_ig_textFormatter
 fn_ig_textGrobber
 fn_ig_panelArborist
 fn_ig_pngMaker

The Infographic has 4 components: the background images (png files); the text that is conditionally
generated and placed over the background images; the way in which all of this is laid out with
respect to each other; and finally the manner in which it is rendered. While the Infographic is not a
plot, it does rely on some of the same dependencies of {ggplot2} in its construction. Namely, the
Infographic utilizes the {grid} package.

The {grid} package is challenging package to master. It is highly recommended that readers look
through chapters 6 and 7 of Paul Murrell’s R Graphics (3rd Edition) prior to altering the
Infographic (beyond modifying some of the basic content of the text). It is beyond the scope of this
documentation to describe the finer points, such as what the grid::textGrob function achieves, or
how a grid::gTree is utilized. The Infographic is quite sensitive, such that by even changing some of
the background images by a few rows of pixels that it will alter the image noticeably, or by
changing the background images to different aspect ratios, it may simply break the Infographic
entirely.

6.5.1. The Design of the Infographic

This section will summarize the general {grid}-based design of the Infographic. Neither this nor the
following sections are meant as a comprehensive introduction to {grid}, although they will
endeavor to clarify parts that may be opaque to novice {grid} users where possible.

It is important to understand the way in which the Infographic is put together on a conceptual
level first. Essentially, the Infographic is constructed from a number of “panels.” This term, “panels”,
should not be misunderstood to be a term originating from {grid}, but rather a term used here to
help describe the building blocks of the schema of the ITHIM TOOL Infographic. There are as
many panels in the Infographic as there are PNG images in the /tool_files directory. Indeed, users
of the ITHIM TOOL see a single Infographic image as the output of the TOOL, however that image
is in fact a composite of 10 images stitched together vertically. As readers perusing the /tool_files
may notice, the original PNG images are largely devoid of text as much of it is dynamically
generated. In the R code, each panel’s text and background image are constructed together first,
and then stitched together. In fact, some of the panels are actually constructed in three parts, one
for each scenario (i.e. the selected scenario, the US Surgeon General scenario, and the Low Carbon
Driving scenario); the three parts are then stitched to form a single panel (which is then quilted
together with the other panels).

https://www.crcpress.com/R-Graphics-Third-Edition/Murrell/p/book/9781498789059
file:///C:/Users/Noneof/Documents/HealthLinks/ARB/Project/UserSupport/ToolDocs/build/html/visualization.html%23panel-schematic

44

Figure 6.2. An illustration of how the panels are divided. Note the lack of text in the Tripartite

Panels (discussed below).

Both fn_ig_DataAssembler and fn_ig_textFormatter have little to do with {grid}. They are
conceptually similar to what many other functions in visualization.R do: they take the scenario data
(the output of run), process it, and then compile some data.frames or lists to be utilized by some
other function(s) to eventually make a visualization. In fn_ig_textFormatter, readers will note that
the function is building a list object named r (which incidentally stands for “row,” but could be
interpreted as “panel”). Once constructed, the r object has a series of parameters for each panel—
upon which it can now place the text. Although this function does not call upon any {grid}
functions, it does prepare for them.

The product of fn_ig_textFormatter is eventually submitted to our first function that makes calls to
{grid} functions, fn_ig_textGrobber. This function calls grid::textGrob to build a graphical object (or
grob) with text for each sub-panel in the tripartite panels. (“Tripartite” as there are three
scenarios.) To clarify, in this function, the portion of the Infographic we’re constructing is for the
panels of various themes depicting scenario values, e.g. for Greenhouse Gas Emissions, Years of
Life, etc.

45

Figure 6.3. An example of a tripartite panel. This is one “panel” as described above, however it is

composed of three parts: the selected scenario, the US Surgeon General, and Low Carbon Driving.

The function fn_ig_panelArborist takes each text graphical object (text grob) produced by
fn_ig_textGrobber and sticks them onto their respective background PNG image (see the above
figure). The actual output is a grid::gTree object with 5 grid::rasterGrob objects (i.e. the panels
numbered 4-8).

Finally, in the function fn_ig_pngMaker, we combine the rest of the panels with the panels we made
in fn_ig_panelArborist and draw it using grid::grid.draw. As a side note, readers should be aware that
the actual “drawing” or rendering of the Infographic occurs in a local environment in {shiny} (see
the section on renderUI). Please also note that {grid} objects are only “theoretical,” so to speak,
until they are drawn or rendered. Indeed, the image is not created until grid::grid.draw is invoked,
and instead the {grid} object is merely a set of instructions that exist in the RAM. With all of this
said, fn_ig_pngMaker does return a drawn graphical image, but is only turned into a PNG in {shiny}
(namely, in output$vis in tool_modules.R).

6.5.2. Implementation of {grid} Functions

There are a myriad of ways to construct an image using {grid}. This section briefly outlines the
main components of the use of {grid} in the ITHIM TOOL Infographic. Consequently, this section
primarily examines the workings of fn_ig_pngMaker.

1. A new page is created with grid.newpage.
2. The first set of “header” panels are created using rasterGrob.
3. Next the tripartite panels are created by first creating the text using textGrob, then placing

them onto the background PNG images using rasterGrob, and finally compiling them into a
gList and placed into a gTree.

4. Then a simple rasterGrob (for “09 - Outcomes.png”) is created.
5. The last panel is constructed for the “footnotes” as a gTree.
6. A layout object is created, using grid.layout with the dimensions of all 10 PNGs stacked

vertically.
7. In the penultimate step, a frameGrob object is created, with the layout object from the

previous step, and all the panels designed above.
8. Finally, the image is generated using grid.draw.

file:///C:/Users/Noneof/Documents/HealthLinks/ARB/Project/UserSupport/ToolDocs/build/html/visualization.html%23fig-ig-panel
file:///C:/Users/Noneof/Documents/HealthLinks/ARB/Project/UserSupport/ToolDocs/build/html/reactivity.html%23local

46

7. Startup Scripts

There are two sets of startup scripts in the ITHIM TOOL, the global.R script that resides in the root
folder alongside the app.R file and the preprocessing.R script inside /tool_files. These start up
scripts only operate once. Unlike the other scripts, they do not define functions utilized in the
{shiny} environment, but rather load libraries, load these other R scripts, process data, and
generate new variables in the global environment. It is customary in {shiny} to place the startup
script in the same directory as the app.R, and the fact that the ITHIM TOOL split startup script into
two is partly arbitrary, and partly a reflection of the desire to segregate TOOL-specific code in
/tool_files to keep things organized.

7.1. global

The global.R script is fairly simple. It loads requisite libraries for the ITHIM TOOL and then loads
the R scripts in /tool_files. One novelty worthy of mention is the design of the loading of libraries:

if(!("shiny" %in% .packages())) # is it already loaded in workspace?
 if(require(shiny) == F) { # load it, but if you can't...
 install.packages("shiny") # install it.
 library(shiny) # try loading it again.
 }

The script checks to see if the package is already loaded in the environment using .packages(); then
tries to load the package using require, which always returns a boolean value; if that fails, it then
attempts to install the package; and then it tries loading the library again. Generally speaking it is
advisable to omit code that automatically installs things without the code user’s knowledge (not to
mention, the possible issues that may arise from conflicting or versioned dependencies). However,
as this code was originally written to be executed by novice R users, it was designed to operate
with the most ease.

7.2. preprocessing

The preprocessing.R script is loaded by global.R, and executes the startup code unique for the
ITHIM TOOL. The general outline is thus:

1. Load the “data_dictionary.csv”, which contains all of the csv files to read.
2. Isolate the default_narratives from the rest of the csv files.
3. Load the default_narratives (into a variable of the same name) and then separate them (into

baseline and scenario data) using fn_narrativeSplitter.
4. Load the rest of the csv files into the global variable d.
5. Run the Data Integrity Check.
6. Create a scenario selection list for the dropdown menu in the TOOL (and place it in d).
7. Create the disease/cause lists for the Analytic Engine (and place it in d).
8. Create the variables for the Scenario Information Box in the left-hand column of the ITHIM

TOOL (and place it in d).
9. Read the Infographic PNGs and record some metrics about them (and place it in d).

47

Most of this code should be self-evident in terms of what each step is attempting to accomplish.
However, in the following sub-sections we’ll explore two less transparent parts, the
“data_dictionary.csv” and how it is generated; and the related matter of Data Integrity.

7.2.1. Data Dictionary

The description of preprocessing.R script is facilitated by an overview of the Data Dictionary. The
Data Dictionary serves as a meta-data repository, containing such things as the name of the file
that should be read for each variable,1 the code levels, and other descriptive information. The Data
Dictionary is automatically generated by the only R script that global.R does not automatically
read. Indeed, this R script, ithim_metadata_extraction.R, must be run by the coder or user in
developer mode. Whenever a change is made to the data, the coder/user/developer must run the
ithim_metadata_extraction.R. 2 While the Data Dictionary is generated automatically, certain parts
of it must be manually entered. For instance, the variables into which each file is read, and the
column titled “ITHIM_Critical” must be written manually by the coder. The latter column
represents variables that the Data Integrity algorithm is required to check upon startup. More on
the Data Integrity algorithm is described in the next sub-section.

7.2.2. Data Integrity

The Data Integrity algorithm is a feature of the ITHIM TOOL that checks that the data (i.e. the csv
files) have not deteriorated or changed between instantiations of the {shiny} app. In essence, data
can deteriorate on web servers through a phenomena called bit rot. While the chances of this
happening are quite low, the intention of this code is to prevent an error from going unnoticed and
providing incorrect analyses to ITHIM users. This is particularly a concern where we use flat files
(i.e. csv files) instead of an advanced database server that would check the integrity of the data on
a regular basis automatically.

The algorithm utilizes the package {digest} to generate a cryptographic hash using SHA-1 . Each
hash is a more or less unique signature of the data. This hash value is then stored in the Data
Dictionary (by the ithim_metadata_extraction.R script). During the preprocessing.R script, the saved
hash value in the Data Dictionary is checked against another generation of hash values (using
digest::sha1) of the data being loaded in the following code chunk:

Load all (non-narrative) data to default data.
d <- lapply(tmp3$Filename,
 function(x) read.csv(file.path(pth, x),
 stringsAsFactors = F))

file:///C:/Users/Noneof/Documents/HealthLinks/ARB/Project/UserSupport/ToolDocs/build/html/startup.html%23filenames
file:///C:/Users/Noneof/Documents/HealthLinks/ARB/Project/UserSupport/ToolDocs/build/html/startup.html%23cwd
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/Secure_Hash_Algorithms

48

7.3. Changes

Make sure to follow this protocol each time you make changes to any of the csv files in /tool_files.

1. Make sure an existing “data_dictionary.csv” is present in /tool_files. (While the
ithim_metadata_extraction.R script can easily generate a new “data_dictionary.csv” from
scratch, you would then need to manually input all the values for the “Variable_Name” and
“ITHIM_Critical” columns.)

2. Run the ithim_metadata_extraction.R script.
3. Check the “data_dictionary.csv” for missing values in the “Variable_Name” and

“ITHIM_Critical” columns.
4. Re-upload the /tool_files directory to the {shiny} server (assuming there is a web server

running the ITHIM TOOL).

Chapter References

1. Note, you can edit the filenames. Just rename the actual file, and then change the

corresponding value in the data_dictionary.csv.

2. The ithim_metadata_extraction.R script must be run in the root folder of the project (i.e. where

the app.R file resides). You can check that you’re in the right directory by using the command
getwd. However, readers are strongly encouraged to create an R project in this directory and
always run the app while this project is open. (The other assumption here is that you run this
script from RStudio.)

file:///C:/Users/Noneof/Documents/HealthLinks/ARB/Project/UserSupport/ToolDocs/build/html/startup.html%23id1
https://support.rstudio.com/hc/en-us/articles/200526207-Using-Projects

